Перевод: со всех языков на английский

с английского на все языки

элементы и составные части

  • 1 элементы

    1) General subject: accidence, details, letters
    2) Naval: data, particulars
    4) Railway term: webbing
    5) Information technology: componentry
    8) Makarov: ABC, accidence (к.-л. дисциплины), rudiment, rudiments

    Универсальный русско-английский словарь > элементы

  • 2 паровое сито стационарной турбины

    1. steam screen

     

    паровое сито стационарной турбины
    паровое сито

    Устройство для защиты проточной части стационарной паровой турбины от инородных тел, которые могут содержаться в потоке пара, поступающего в турбину.
    [ ГОСТ 23269-78]

    Тематики

    Обобщающие термины

    Синонимы

    EN

    DE

    FR

    Русско-английский словарь нормативно-технической терминологии > паровое сито стационарной турбины

  • 3 блок клапанов паровой стационарной турбины

    1. control valve block

     

    блок клапанов паровой стационарной турбины
    блок клапанов

    Совокупность стопорного и регулирующих клапанов паровой стационарной турбины, объединенных общим корпусом.
    [ ГОСТ 23269-78]

    Тематики

    Обобщающие термины

    Синонимы

    EN

    DE

    FR

    34. Блок клапанов паровой стационарной турбины

    Блок клапанов

    D. Ventilblock

    E. Control valve block

    F. Eusemble des soupapes de reglage

    Совокупность стопорного и регулирующих клапанов паровой стационарной турбины, объединенных общим корпусом

    Источник: ГОСТ 23269-78: Турбины стационарные паровые. Термины и определения оригинал документа

    Русско-английский словарь нормативно-технической терминологии > блок клапанов паровой стационарной турбины

  • 4 валопровод паровой стационарной турбины

    1. turbine shafting

     

    валопровод паровой стационарной турбины
    валопровод турбины

    Совокупность соединенных между собой роторов последовательно расположенных цилиндров паровой стационарной турбины.
    [ ГОСТ 23269-78]

    Тематики

    Обобщающие термины

    Синонимы

    EN

    DE

    FR

    29. Валопровод паровой стационарной турбины

    Валопровод турбины

    D. Turbinenwellenleitung

    E. Turbine shafting

    F. Lique d'arbre de la turbine a vapeur

    Совокупность соединенных между собой роторов последовательно расположенных цилиндров паровой стационарной турбины

    Источник: ГОСТ 23269-78: Турбины стационарные паровые. Термины и определения оригинал документа

    Русско-английский словарь нормативно-технической терминологии > валопровод паровой стационарной турбины

  • 5 двухпоточный цилиндр паровой стационарной турбины

    1. double-flow cylinder

     

    двухпоточный цилиндр паровой стационарной турбины
    двухпоточный цилиндр

    Цилиндр паровой стационарной турбины, в котором поток пара разделяется и рабочий процесс осуществляется в ступенях, расположенных параллельно.
    [ ГОСТ 23269-78]

    Тематики

    Обобщающие термины

    Синонимы

    EN

    DE

    FR

    Русско-английский словарь нормативно-технической терминологии > двухпоточный цилиндр паровой стационарной турбины

  • 6 однопоточный цилиндр паровой стационарной турбины

    1. single-flow cylinder

     

    однопоточный цилиндр паровой стационарной турбины
    однопоточный цилиндр

    Цилиндр паровой стационарной турбины, в котором рабочий процесс осуществляется в последовательно расположенных ступенях.
    [ ГОСТ 23269-78]

    Тематики

    Обобщающие термины

    Синонимы

    EN

    DE

    FR

    Русско-английский словарь нормативно-технической терминологии > однопоточный цилиндр паровой стационарной турбины

  • 7 противоточный цилиндр паровой стационарной турбины

    1. return-flow cylinder

     

    противоточный цилиндр паровой стационарной турбины
    противоточный цилиндр

    Цилиндр паровой стационарной турбины, в котором рабочий процесс совершается последовательно в двух группах ступеней с противоположным направлением потока пара.
    [ ГОСТ 23269-78]

    Тематики

    Обобщающие термины

    Синонимы

    EN

    DE

    FR

    Русско-английский словарь нормативно-технической терминологии > противоточный цилиндр паровой стационарной турбины

  • 8 регулирующий клапан паровой стационарной турбины

    1. control valve

     

    регулирующий клапан паровой стационарной турбины
    регулирующий клапан

    Клапан для регулирования расхода пара через проточную часть цилиндра паровой стационарной турбины.
    [ ГОСТ 23269-78]

    Тематики

    Обобщающие термины

    Синонимы

    EN

    DE

    FR

    33. Регулирующий клапан паровой стационарной турбины

    Регулирующий клапан

    D. Regelventil

    E. Control valve

    F. Soupape de reglage

    Клапан для регулирования расхода пара через проточную часть цилиндра паровой стационарной турбины

    Источник: ГОСТ 23269-78: Турбины стационарные паровые. Термины и определения оригинал документа

    Русско-английский словарь нормативно-технической терминологии > регулирующий клапан паровой стационарной турбины

  • 9 ротор паровой стационарной турбины

    1. steam turbine rotor

     

    ротор паровой стационарной турбины
    ротор турбины

    Совокупность вращающихся элементов цилиндра паровой стационарной турбины.
    [ ГОСТ 23269-78]

    Тематики

    Обобщающие термины

    Синонимы

    EN

    DE

    FR

    Русско-английский словарь нормативно-технической терминологии > ротор паровой стационарной турбины

  • 10 фикспункт паровой стационарной турбины

    1. anchor point

     

    фикспункт паровой стационарной турбины
    Ндп. мертвая точка турбины
    неподвижная точка турбины

    Точка статора паровой стационарной турбины, неподвижная относительно фундамента при тепловых расширениях статора.
    [ ГОСТ 23269-78]

    Недопустимые, нерекомендуемые

    Тематики

    Обобщающие термины

    EN

    DE

    FR

    31. Фикспункт паровой стационарной турбины

    Ндп. Мертвая точка турбины

    Неподвижная точка турбины

    D. Fixpunkt

    E. Anchor point

    F. Point d'arret de la turbine

    Точка статора паровой стационарной турбины, неподвижная относительно фундамента при тепловых расширениях статора

    Источник: ГОСТ 23269-78: Турбины стационарные паровые. Термины и определения оригинал документа

    Русско-английский словарь нормативно-технической терминологии > фикспункт паровой стационарной турбины

  • 11 цилиндр высокого давления паровой стационарной турбины

    1. high-pressure cylinder

     

    цилиндр высокого давления паровой стационарной турбины
    ЦВД

    Первый по ходу пара цилиндр многоцилиндровой паровой стационарной турбины.
    [ ГОСТ 23269-78]

    Тематики

    Обобщающие термины

    Синонимы

    EN

    DE

    FR

    Русско-английский словарь нормативно-технической терминологии > цилиндр высокого давления паровой стационарной турбины

  • 12 цилиндр низкого давления паровой стационарной турбины

    1. low-pressure cylinder

     

    цилиндр низкого давления паровой стационарной турбины
    ЦНД

    Последний по ходу пара цилиндр многоцилиндровой паровой стационарной турбины с конденсатором.
    [ ГОСТ 23269-78]

    Тематики

    Обобщающие термины

    Синонимы

    EN

    DE

    FR

    Русско-английский словарь нормативно-технической терминологии > цилиндр низкого давления паровой стационарной турбины

  • 13 цилиндр паровой стационарной турбины

    1. steam turbine cylinder

     

    цилиндр паровой стационарной турбины
    цилиндр турбины

    Часть паровой стационарной турбины, состоящая из ротора, статора и устройства для подвода и отвода пара, в которой энергия пара преобразуется в механическую работу вращения ротора.
    [ ГОСТ 23269-78]

    EN

    cylinder (of a steam turbine)
    one of the casings of a steam turbine in which are located most stationary parts
    Note 1 – In a 3 cylinder turbine, following the input steam pressure, exist:
    - H.P. cylinder (high pressure)
    - I.P. cylinder (intermediate-pressure)
    - L.P. cylinder (low pressure).
    Note 2 – In a wider sense, both casing and rotor together may be called a cylinder.
    [IEV ref 602-02-50]

    FR

    corps (d'une turbine à vapeur)
    un des stators de la turbine à vapeur sur lequel sont disposés les aubages directeurs
    Note 1 – Selon la pression de la vapeur à l'admission, dans une turbine à 3 corps, on distingue:
    - corps H.P. (haute pression)
    - corps M.P. (moyenne pression)
    - corps B.P. (basse pression).
    Note 2 – Par extension, on appelle également corps: l'ensemble du stator et du rotor.
    [IEV ref 602-02-50]

    Тематики

    Обобщающие термины

    Синонимы

    EN

    DE

    FR

    Русско-английский словарь нормативно-технической терминологии > цилиндр паровой стационарной турбины

  • 14 цилиндр среднего давления паровой стационарной турбины

    1. intermediate-pressure cylinder

     

    цилиндр среднего давления паровой стационарной турбины
    ЦСД

    Промежуточный по ходу пара цилиндр многоцилиндровой паровой стационарной турбины с конденсатором.
    [ ГОСТ 23269-78]

    Тематики

    Обобщающие термины

    Синонимы

    EN

    DE

    FR

    Русско-английский словарь нормативно-технической терминологии > цилиндр среднего давления паровой стационарной турбины

  • 15 elements of interoperation time

    элементы межоперационного времени (составные части норматива времени перерыва между смежными операциями технологического процесса, например, времени транспортировки, послеоперационной проверки и др.)

    Англо-русский словарь промышленной и научной лексики > elements of interoperation time

  • 16 разлагать

    1) General subject: analyse, break, canker, contaminate, corrode (душу), decompose, deprave, destruct (материал), dissociate, dissolve (на составные части), separate (на части), taint, vitiate (нравы), corrupt, rust
    2) Medicine: resolve
    3) Engineering: decay, disintegrate, scan, sweep
    4) Agriculture: dissolve (на составные части; ся)
    5) Chemistry: analyze, break down, degrade
    6) Mathematics: decompose (into), decompose (на элементы), develop (в ряд), develop (выражение), expand (в ряд), factor, rearrange
    7) Railway term: decompose (на составляющие), disorganize
    10) Oil: decompound
    11) Automation: resolve (вектор)
    13) Gold mining: decompose (ся)

    Универсальный русско-английский словарь > разлагать

  • 17 анализ

    1. review
    2. en
    3. analysis

     

    анализ
    1) Метод научного исследования, состоящий в мысленном или фактическом разложении целого на составные части.
    2) Химический анализ - совокупность операций, имеющих целью установить, из каких веществ состоит исследуемый объект (качественный анализ) или в каких количественных соотношениях входят в него те или иные вещества (количественный анализ).
    [МУ 64-01-001-2002]

    анализ
    Исследовательский метод, состоящий в том, что объект исследования, рассматриваемый как система, мысленно или практически расчленяется на составные элементы (признаки, свойства, отношения и т. п.) для изучения каждого из них в отдельности и выявления их роли и места в системе, обнаружения таким образом структуры системы. В дальнейшем изученные в процессе А. элементы подвергаются синтезу, что позволяет на новом уровне знания продолжить и углубить исследование системы. Экономический А., т.е. анализ экономических систем разного уровня, производится различными средствами, в том числе и экономико-математическими. Основное назначение последних заключается в возможно более полной формализации и количественном обосновании решений, которые в условиях реальной экономики принимаются в основном на интуитивном уровне. Экономико-математическому анализу могут подвергаться: а) материальный объект; б) информационный объект; в) ситуация; г) решение; д) процесс. Целью анализа в случаях а), б) может быть выявление структуры и закономерностей функционирования экономической системы, в случае в) - исследование устойчивости ситуации, возможных путей ее изменения; в случае г) - выявление множества альтернативных решений (альтернатив) и их возможных исходов; д) - определение траектории процесса и исследование ее устойчивости. См. также: Анализ производственных отраслей, Анализ спроса и потребления, «Затраты-выпуск», «Затраты-эффективность», Системный анализ, Экономико-математический анализ решения оптимизационных задач.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    3.8.7 анализ (review): Деятельность, предпринимаемая для установления пригодности, адекватности и результативности (3.2.14) рассматриваемого объекта для достижения установленных целей.

    Примечание - Анализ может также включать определение эффективности (3.2.15).

    Пример - Анализ со стороны руководства, анализ проектирования и разработки, анализ требований потребителей, анализ несоответствий.

    Источник: ГОСТ Р ИСО 9000-2008: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.1 анализ (analysis): Процедура оценки состояния машины и ее повреждений на основе методов обработки сигнала и знаний принципов работы машин данного вида.

    Источник: ГОСТ Р ИСО 18436-2-2005: Контроль состояния и диагностика машин. Требования к обучению и сертификации персонала. Часть 2. Вибрационный контроль состояния и диагностика оригинал документа

    3.8.7 анализ (en review; fr revue): Деятельность, предпринимаемая для установления пригодности, адекватности, результативности (3.2.14) рассматриваемого объекта для достижения установленных целей.

    Примечание - Анализ может также включать определение эффективности (3.2.15).

    Примеры: анализ со стороны руководства, анализ проектирования и разработки, анализ требований потребителей и анализ несоответствий.

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.8.7 анализ (review): Деятельность, предпринимаемая для установления пригодности, адекватности и результативности (3.2.14) рассматриваемого объекта для достижения установленных целей.

    Примечание - Анализ может также включать определение эффективности (3.2.15).

    Пример- Анализ со стороны руководства, анализ проектирования и разработки, анализ требований потребителей, анализ несоответствий.

    Источник: ГОСТ ISO 9000-2011: Системы менеджмента качества. Основные положения и словарь

    3.1.3 анализ (analysis): Деятельность для определения приблизительных и окончательных данных анализа топливной ценности (калорийности) и технических требований к размеру частиц ТДШ.

    Источник: ГОСТ Р 54260-2010: Ресурсосбережение. Обращение с отходами. Стандартное руководство по использованию топлива, полученного из отходов шин оригинал документа

    3.2.62 анализ (review): Деятельность, предпринимаемая для установления пригодности, адекватности, результативности рассматриваемого объекта для достижения установленных целей.

    Источник: ГОСТ Р 54147-2010: Стратегический и инновационный менеджмент. Термины и определения оригинал документа

    Русско-английский словарь нормативно-технической терминологии > анализ

  • 18 схема

    1. scheme
    2. schema
    3. arrangement

     

    схема
    Упрощённое графическое изображение предмета или процесса с пояснением и описанием
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    схема
    Условное графическое изображение объекта, в общих чертах передающее суть его характера и структуру.
    [ ГОСТ Р 7.0.3-2006]

    схема
    Конструктивные узлы и электрические соединения обмоток преобразователя и радиоэлектронных элементов прибора
    [Система неразрушающего контроля. Виды (методы) и технология неразрушающего контроля. Термины и определения (справочное пособие). Москва 2003 г.]

    1. ВИДЫ И ТИПЫ СХЕМ

    1.1. Схемы в зависимости от видов элементов и связей, входящих в состав изделия (установки), подразделяют на следующие виды:

    • электрические;
    • гидравлические;
    • пневматические;
    • газовые (кроме пневматических);
    • кинематические;
    • вакуумные;
    • оптические;
    • энергетические;
    • деления;
    • комбинированные.

    Примечания:

    1. Для изделия, в состав которого входят элементы разных видов, разрабатывают несколько схем соответствующих видов одного типа, например, схема электрическая принципиальная и схема гидравлическая принципиальная или одну комбинированную схему, содержащую элементы и связи разных видов.

    2. На схеме одного вида допускается изображать элементы схем другого вида, непосредственно влияющие на работу схемы этого вида, а также элементы и устройства, не входящие в изделие (установку), на которое (которую) составляют схему, но необходимые для разъяснения принципов работы изделия (установки).

    Графические обозначения таких элементов и устройств отделяют на схеме штрих-пунктирными линиями, равными по толщине линиям связи, и помещают надписи, указывая в них местонахождение этих элементов, а также необходимые данные.

    3. Схему деления изделия на составные части (схему деления) выпускают для определения состава изделия.

    1.2. Схемы в зависимости от основного назначения подразделяют на следующие типы:

    • структурные;
    • функциональные;
    • принципиальные (полные);
    • соединений (монтажные);
    • подключения;
    • общие;
    • расположения;
    • объединенные.

    Примечание. Наименования типов схем, указанные в скобках, устанавливают для электрических схем энергетических сооружений.


    2.6. Перечень элементов

    2.6.1. Перечень элементов помещают на первом листе схемы или выполняют в виде самостоятельного документа.

    2.6.2. Перечень элементов оформляют в виде таблицы (черт. 3), заполняемой сверху вниз.

    4696

    Черт. 3

    В графах таблицы указывают следующие данные: в графе "Поз. обозначение" - позиционные обозначения элементов, устройств и функциональных групп;

    в графе "Наименование" - для элемента (устройства) - наименование в соответствии с документом, на основании которого этот элемент (устройство) применен, и обозначение этого документа (основной конструкторский документ, государственный стандарт, отраслевой стандарт, технические условия); - для функциональной группы - наименование:

    в графе Примечание" - рекомендуется указывать технические данные элемента (устройства), не содержащиеся в его наименовании.

    2.6.3. При выполнении перечня элементов на первом листе схемы его располагают, как правило, над основной надписью.

    .....

    2.6.5. При разбивке поля схемы на зоны перечень элементов дополняют графой "Зона" (черт. 4), указывая в ней обозначение зоны, в которой расположен данный элемент (устройство).

    4697
    Черт. 4

    [ГОСТ 2.701-84]

    Тематики

    • виды (методы) и технология неразр. контроля
    • издания, основные виды и элементы
    • проектирование, документация

    EN

    DE

    FR

    2.59 схема (schema): Описание содержания, структуры и ограничений, используемых для создания и поддержки базы данных.

    Источник: ГОСТ Р ИСО/МЭК ТО 10032-2007: Эталонная модель управления данными

    Русско-английский словарь нормативно-технической терминологии > схема

  • 19 система кондиционирования воздуха

    1. air conditioning system

     

    система кондиционирования воздуха
    Совокупность воздухотехнического оборудования, предназначенная для кондиционирования воздуха в помещениях
    [ ГОСТ 22270-76]

    система кондиционирования воздуха

    Совокупность технических средств для обработки и распределения воздуха, а также автоматического регулирования его параметров с дистанционным управлением всеми процессами
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    система кондиционирования воздуха

    Комбинация всех компонент, необходимых для обработки воздуха, в процессе которой осуществляется контроль или понижение температуры, возможно, в комбинации с контролем вентиляции, влажности и чистоты воздуха.
    [ДИРЕКТИВА 2002/91/ЕС ЕВРОПЕЙСКОГО ПАРЛАМЕТА И СОВЕТА от 16 декабря 2002 г. по энергетическим характеристикам зданий]


    КЛАССИФИКАЦИЯ



    Классификация систем кондиционирования воздуха

    М. Г. Тарабанов, директор НИЦ «ИНВЕНТ», канд. техн. наук, вице-президент НП «АВОК», лауреат премии НП «АВОК» «Медаль имени И. Ф. Ливчака», «Медаль имени В. Н. Богословского», otvet@abok.ru

    Общие положения

    Краткий, но достаточно полный обзор истории развития кондиционирования воздуха представлен в работе А. И. Липы [1], поэтому отметим только несколько моментов. Родоначальником техники кондиционирования воздуха в ее современном понимании считается американский инженер Виллис Хэвилэнд Кэрриер (Willis Haviland Carrier), который в 1902 году в Нью-Йорке в Бруклинской типографии применил поверхностный водяной воздухоохладитель с вентилятором для получения летом в помещении температуры +26,5 °C и относительной влажности 55 %. Вода охлаждалась в аммиачной холодильной машине. Зимой для увлажнения внутреннего воздуха до 55 % использовался водяной пар от бойлера.
    Термин «кондиционирование воздуха» был предложен в 1906 году Стюартом Уорреном Крамером (Stuart Warren Cramer).
    В отечественной практике некоторые авторы применяют термин «кондиционирование микроклимата». Заметим, что этот термин отличается от «кондиционирования воздуха», так как включает в себя дополнительные факторы, не связанные с состоянием воздушной среды в помещении (шум, инсоляция и др.).
    К сожалению, несмотря на солидный возраст термин «кондиционирование воздуха» не получил четкого определения в современных отечественных нормативных документах. Для устранения этого пробела сформулируем: «Кондиционирование воздуха – это создание и автоматическое поддержание в обслуживаемом помещении или технологическом объеме требуемых параметров и качества воздуха независимо от внутренних возмущений и внешних воздействий». К параметрам воздуха относятся: температура, относительная влажность или влагосодержание и подвижность. Качество воздуха включает в себя газовый состав, запыленность, запахи, аэроионный состав, т. е. более широкий круг показателей, чем термин «чистота», используемый в [2].
    Комплекс оборудования, элементов и устройств, с помощью которых обеспечивается кондиционирование воздуха в обслуживаемых помещениях, называется системой кондиционирования воздуха (СКВ).
    Приведенное выше определение системы кондиционирования воздуха по смыслу полностью совпадает с определением ASHRAE: «”air-conditioning system” – комплекс оборудования для одновременной обработки и регулирования температуры, влажности, чистоты воздуха и распределения последнего в соответствии с заданными требованиями» [3].
    Общепринятого, устоявшегося мнения, что следует включать в состав СКВ, к сожалению, нет.
    Так, например, по мнению О. Я. Кокорина [4] СКВ может включать в себя:

    • установку кондиционирования воздуха (УКВ), обеспечивающую необходимые кондиции воздушной среды по тепловлажностным качествам, чистоте, газовому составу и наличию запахов;
    • средства автоматического регулирования и контроля за приготовлением воздуха нужных кондиций в УКВ, а также для поддержания в обслуживаемом помещении или сооружении постоянства заданных кондиций воздуха;
    • устройства для транспортирования и распределения кондиционированного воздуха;
    • устройства для транспортирования и удаления загрязненного внутреннего воздуха;
    • устройства для глушения шума, вызываемого работой элементов СКВ;
    • устройства для приготовления и транспортирования источников энергии, необходимых для работы аппаратов в СКВ.

    В зависимости от конкретных условий некоторые составные части СКВ могут отсутствовать.
    Однако согласиться с отдельными пунктами предложенного состава СКВ нельзя, так как если следовать логике автора [4], то в состав СКВ должны войти и системы оборотного водоснабжения, водопровода и канализации, ИТП и трансформаторные, которые также необходимы для работы аппаратов в СКВ.
    Достаточно полное представление о структуре СКВ дает разработанная во ВНИИкондиционере «Блок-схема системы кондиционирования воздуха» (рис. 1) [5].

    4804

    Включенные в эту блок-схему подсистемы обработки воздуха по своему функциональному назначению делятся на блоки:

    • основной обработки и перемещения: Б1.1 – приемный, Б1.8 – очистки, Б1.2 – сухого (первого) подогрева, Б1.3 – охлаждения, Б1.6 – тепловлажностной обработки, Б1.9 – перемещения приточного воздуха;
    • дополнительной обработки и перемещения: Б2.1 – утилизации, Б2.2 – предварительного подогрева, Б2.3 – доводки общей (второй подогрев, дополнительное охлаждение), Б2.4 – зональной доводки, Б2.5 – местной доводки (эжекционные доводчики и др.), Б2.7 – шумоглушения, Б2.8 – перемещения рециркуляционного воздуха;
    • специальной обработки: Б5.5 – тонкой очистки;
    • воздушной сети: Б4.2 – воздухораспределительных устройств, Б4.3 – вытяжных устройств, Б4.5 – воздуховодов;
    • автоматизации – арматуры – Б3.1.

    Помимо этих блоков в СКВ может входить система холодоснабжения (снабжение электроэнергией и теплом осуществляется, как правило, централизованно). Ее включение в состав СКВ, видимо, относится к автономным кондиционерам (см. далее).
    Для определения состава оборудования, входящего в СКВ, и границ раздела целесообразно воспользоваться делением на разделы, которое сложилось в практике проектирования.
    В частности, при выполнении проектов кондиционирования воздуха достаточно серьезных объектов обычно выделяют в самостоятельные разделы: теплоснабжение СКВ; холодоснабжение и холодильные центры; электроснабжение; автоматизация; водоснабжение, в том числе оборотное, канализация и дренаж.
    Причем по каждому из разделов составляют свою спецификацию, в которую включено оборудование, материалы и арматура, относящиеся к своему конкретному разделу.
    Таким образом, в состав СКВ следует включить:

    • УКВ, предназначенную для очистки и тепловлажностной обработки и получения необходимого качества воздуха и его транспортировки по сети воздуховодов до обслуживаемого помещения или технического объема;
    • сеть приточных воздуховодов с воздухораспределителями, клапанами и регулирующими устройствами;
    • вытяжной вентилятор и сеть вытяжных и рециркуляционных воздуховодов с сетевым оборудованием;
    • сеть фреоновых трубопроводов для сплит-систем и VRV-систем с кабелями связи наружных блоков с внутренними;
    • фэнкойлы, эжекционные доводчики, моноблоки, холодные и теплые потолки и балки и др. доводчики для охлаждения и (или) нагревания непосредственно внутреннего воздуха;
    • оборудование для утилизации теплоты и холода;
    • дополнительные воздушные фильтры, шумоглушители и другие элементы.

    И даже систему автоматики, входящую в СКВ как бы по определению, целесообразно выделить отдельно, так как ее проектируют инженеры другой специальности, хотя и по заданию так называемых технологов СКВ.
    Границей СКВ и систем теплохолодоснабжения можно считать узлы регулирования, а границей электроснабжения и автоматики – электрические щиты и щиты управления, которые в последнее время очень часто делают совмещенными.

    Классификация систем кондиционирования воздуха

    Проблемам классификации СКВ в большей или меньшей степени уделяли внимание практически все авторы учебников и монографий по кондиционированию воздуха. Вот что написал по этому вопросу известный специалист, доктор техн. наук А. А. Рымкевич [6]: «Анализ иерархической структуры самих СКВ прежде всего требует их классификации и только затем их декомпозиции на подсистемы. …Однако для СКВ, решения которых базируются на учете большого числа данных, разработать такую классификацию всегда сложно. Не случайно в литературе нет единого мнения по данному вопросу, и поэтому многие известные авторы… предложили различные методы классификации».
    Предложенная А. А. Рымкеви-чем концепция выбора признаков классификации СКВ сформулирована очень точно, и с ней нельзя не согласиться. Проблема состоит в том, как этой концепцией воспользоваться и какие признаки считать определяющими, а какие вторичными, и как точно сформулировать эти признаки.
    В начале восьмидесятых годов прошлого века наиболее полная классификация СКВ была предложена в работе Б. В. Баркалова и Е. Е. Карписа [7].
    Основные признаки этой классификации с некоторыми дополнениями использованы и в недавно изданной монографии А. Г. Сотникова [8] и в других работах, однако некоторые формулировки отдельных признаков требуют уточнения и корректировки.
    Например, для опытных специалистов не составит труда разделить СКВ на центральные и местные, посмотрим, как признак такого деления сформулирован разными авторами.
    Б. В. Баркалов, Е. Е. Карпис пишут [7]: «В зависимости от расположения кондиционеров по отношению к обслуживаемым помеще-ниям СКВ делятся на центральные и местные». А. Г. Сотников [8] считает необходимым дополнить: «Деление на местные и центральные СКВ учитывает как место установки кондиционера, так и группировку помещений по системам», а О. Я. Кокорин уточняет: «По характеру связи с обслуживаемым помещением можно подразделить СКВ на три вида: центральные, местные и центрально-местные. Центральные СКВ характеризуются расположением УКВ в удалении от обслуживаемых объектов и наличием приточных воздуховодов значительной протяженности. Местные СКВ характеризуются расположением УКВ в самом обслуживаемом помещении или в непосредственной близости от него, при отсутствии (или наличии весьма коротких) приточных воздуховодов. Центрально-местные СКВ характеризуются как наличием УКВ в удалении от обслуживаемых объектов, так и местных УКВ, располагаемых в самих помещениях или в непосредственной близости от них».
    Трудно понять, что имеется в виду под группировкой помещений по системам и что считается протяженными или весьма короткими воздуховодами. Например, кондиционеры, обслуживающие текстильные цеха на Волжском заводе синтетического волокна, имеют производительность по воздуху до 240 м3/ч и расположены рядом с обслуживаемыми помещениями, то есть непосредственно за стенами, но никто из указанных выше авторов не отнес бы их к местным системам.
    Несколько иной признак клас-сификации предложил Е. В. Стефанов [9]: «… по степени централизации – на системы центральные, обслуживающие из одного центра несколько помещений, и местные, устраиваемые для отдельных помещений и располагающиеся, как правило, в самих обслуживаемых помещениях».
    К сожалению, и эта формулировка является нечеткой, так как одно большое помещение могут обслуживать несколько центральных кондиционеров, а группу небольших помещений – один местный кондиционер.
    Фактически в отечественной практике негласно действовал совсем другой признак классификации: все кондиционеры, выпускавшиеся Харьковским заводом «Кондиционер», кроме шкафных, считались центральными, а все кондиционеры, выпускавшиеся Домодедовским заводом «Кондиционер», кроме горизонтальных производительностью 10 и 20 тыс. м3/ч, – относились к местным.
    Конечно, сегодня такое деление выглядит смешным, а между тем в нем был определенный здравый смысл.
    Известно, что в местных системах используются готовые агрегаты полной заводской сборки обычно шкафного типа со стандартным набором тепломассообменного оборудования с уже готовыми, заданными заранее техническими характеристиками, поэтому местные УКВ не проектируют, а подбирают для конкретного обслуживаемого помещения или группы небольших однотипных помещений.
    Максимальная производительность местных систем по воздуху обычно не превышает 20–30 тыс. м3/ч.
    Центральные кондиционеры могут быть также полной заводской сборки или собираются на месте монтажа, причем технические характеристики всех элементов, включая воздушные фильтры, вентиляторы и тепломассообменное оборудование, задаются производителями в очень широких пределах, поэтому такие кондиционеры не подбирают, а проектируют, а затем изготавливают в соответствии с бланком-заказом для конкретного объекта.
    Обычно центральные кондиционеры собирают в виде горизонтальных блоков, причем производительность таких кондиционеров по воздуху значительно больше, чем у местных и достигает 100–250 тыс. м3/ч у разных фирм-производителей.
    Очевидно, что отмеченные признаки относятся к УКВ, но их можно использовать и для классификации СКВ, например, СКВ с центральной УКВ – центральная СКВ, а с местной УКВ – местная СКВ. Такой подход не исключает полностью признаки, предложенные другими авторами, а дополняет их, исключая некоторые неопределенности, типа протяженности воздуховодов и др.
    Для дальнейшей классификации СКВ рассмотрим схему ее функционирования.
    На параметры внутреннего воздуха в обслуживаемом помещении или технологическом объеме оказывают воздействие внутренние возмущения, то есть изменяющиеся тепло- и влаговыделения, а также внешние факторы, например, изменение температуры и влагосодержания наружного воздуха, воздействие на остекленный фасад прямой солнечной радиации в разное время суток и др.
    Задача СКВ состоит в том, чтобы улавливать и своевременно устранять последствия этих возмущений и воздействий для сохранения параметров внутреннего воздуха в заданных пределах, используя систему автоматического регулирования и необходимый набор оборудования (воздухоохладители, воздухонагреватели, увлажнители и др.), а также источники теплоты и холода.
    Поддерживать требуемые параметры внутреннего воздуха можно изменяя параметры или расход приточного воздуха, подаваемого в помещение извне, или с помощью аппаратов, установленных непосредственно в помещении, так называемых доводчиков.
    Сегодня в качестве доводчиков используют внутренние блоки сплит-систем и VRV-систем, фэнкойлы, моноблоки, охлаждаемые потолки и балки и другие элементы.
    К сожалению, в классификации [7] вместо понятия «доводчики» используется понятие «водовоздушные СКВ», а в классификации [8] дополнительно вводится термин «водо- и фреоновоздушная СКВ». С подобными предложениями нельзя согласиться в принципе, так как их авторы вольно или невольно присваивают сплит-системам или фэнкойлам статус систем кондиционирования воздуха, которыми они не являются и, естественно, не могут входить в классификацию СКВ, поскольку являются всего лишь местными охладителями или нагревателями, то есть не более чем доводчиками.
    Справедливости ради отметим, что Б. В. Баркалов начинает описание центральных водовоздушных систем очень точной фразой: «В каждое помещение вводится наружный воздух, приготовленный в центральном кондиционере. Перед выпуском в помещение он смешивается с воздухом данного помещения, предварительно охлажденным или нагретым в теплообменниках кондиционеров?доводчиков, снабжаемых холодной и горячей водой». Приведенная цитата показывает, что автор хорошо понимает неопределенность предложенного им признака классификации и поэтому сразу поясняет, что он имеет в виду под центральными водовоздушными системами.
    Системы без доводчиков могут быть прямоточными, когда в помещение подается обработанный наружный воздух, и с рециркуляцией, когда к наружному воздуху подмешивают воздух, забираемый из помещения. Кроме того, технологические СКВ, обслуживающие помещения или аппараты без пребывания людей, могут работать без подачи наружного воздуха со 100 % рециркуляцией. В зависимости от алгоритма работы СКВ различают системы с постоянной рециркуляцией, в которых соотношение количества наружного и рециркуляционного воздуха во время работы не изменяется, и СКВ с переменной рециркуляцией, в которых количество наружного воздуха может изменяться от 100 % до некоторого нормируемого минимального уровня.
    Кроме того, системы с рециркуляцией могут быть одновентиляторными и двухвентиляторными. В первых системах подача приточного воздуха в помещение, а также забор наружного и рециркуляционного воздуха осуществляется приточным вентилятором УКВ. Во втором случае для удаления воздуха из помещения и подачи его на рециркуляцию или на выброс применяют дополнительный вытяжной вентилятор.
    Независимо от схемы компоновки и устройства отдельных элементов СКВ подразделяют также по их назначению. Многие авторы делят СКВ на комфортные, технологические и комфортно-технологические. Более удачной и полной представляется классификация СКВ по назначению на эргономической основе, разработанная ВНИИкондиционером [5].
    Определено, что СКВ могут выполнять одну из трех функций обслуживания: машин; машин + людей; людей.
    1-я группа (символ «машина») определена как технологические СКВ. СКВ этой группы обслуживают технологические аппараты, камеры, боксы, машины и т. п., то есть применяются в тех случаях, когда условия воздушной среды диктуются обеспечением работоспособности технологического оборудования. При этом параметры воздушной среды могут отличаться от тех, которые определяются санитарно-гигиеническими нормами.
    1-я группа имеет две модификации:

    • Подгруппа 1–1 включает в себя кондиционируемые объекты, полностью исключающие возможность пребывания в них человека, то есть это системы технологического охлаждения, обдува электронных блоков вычислительных машин, шахты обдува волокна прядильных машин и т. п.
    • Подгруппа 1–2 включает в себя кондиционируемые объекты: технологические аппараты (машины, камеры, боксы) и помещения с особыми параметрами воздушной среды (калориметрического, экологического и другого назначения), в которых человек отсутствует или находится эпизодически (для снятия показаний приборов, изменения режима работы и т. д.).

    Если для группы 1–1 отсутствуют какие-либо ограничения по параметрам и составу воздушной среды, то для объектов подгруппы 1–2 газовый состав воздушной среды должен находиться в пределах, установленных ГОСТ.
    2-я группа (символ «машина + человек») определена как технологически комфортные СКВ. СКВ этой группы обслуживают производственные помещения, в которых длительно пребывают люди.
    2-я группа имеет три модификации:

    • Подгруппа 2–1. Технологически комфортные СКВ обеспечивают условия нормального осуществления технологических процессов как для производств, в которых затруднено или практически невозможно получение продукции без поддержания определенных параметров воздушной среды, так и для производств, в которых колебания параметров воздуха существенно влияют на качество продукции и величину брака.
    • Для этих помещений СКВ устраивается в первую (и основную) очередь по требованиям технологии, однако в связи с наличием в этих помещениях людей, параметры КВ устанавливают с учетом требований санитарно-гигиенических норм.
    • Подгруппа 2–2. СКВ создаются для исключения дискомфортных условий труда при тяжелых режимах работы людей (кабины крановщиков мостовых кранов металлургических заводов и ТЭЦ, кабины строительно-дорожных машин и т. д.). Производственные или экономические аспекты для этих установок имеют второстепенное значение.
    • Подгруппа 2–3. СКВ обеспечивают в производственных помещениях комфортные условия труда, способствующие повышению производительности труда, улучшению проведения основных технологических режимов, снижению заболеваемости, уменьшению эксплуатационных затрат и т. п.

    3-я группа (символ «люди») определена как комфортные СКВ, обеспечивающие санитарно-гигиенические условия труда, отдыха или иного пребывания людей в помещениях гражданских зданий, то есть вне промышленного производства.
    Эта группа имеет две модификации:

    • Подгруппа 3–1. СКВ обслуживают помещения общественных зданий, в которых для одной части людей пребывание в них кратковременно (например, покупатели в универмаге), а для другой – длительно (например, продавцы в этом же универмаге).
    • Подгруппа 3–2. СКВ обеспечивают оптимальные условия пребывания людей в жилых помещениях.

    В классификацию ВНИИконди-ционера необходимо ввести еще одну группу – медицинские СКВ. Очевидно, что СКВ, обслуживающие операционные, реанимационные или палаты интенсивной терапии, никак нельзя считать комфортными, а чтобы отнести их к технологическим, надо в качестве «машины» рассматривать самого человека, что просто глупо.
    Медицинские СКВ должны иметь две подгруппы:

    • Подгруппа 4–1. СКВ обслуживают операционные, реанимационные и т. п. помещения.
    • Подгруппа 4–2. СКВ обеспечивают требуемые параметры воздуха в палатах, кабинетах врачей, процедурных и т. п.

     

    4805

    Для завершения классификации СКВ рассмотрим еще несколько признаков.
    По типу системы холодоснабжения различают автономные и неавтономные СКВ. В автономных источник холода встроен в кондиционер, в неавтономных – источником холода является отдельный холодильный центр. Кроме того, в автономных кондиционерах в воздухоохладитель может подаваться кипящий хладон или жидкий промежуточный хладоноситель (холодная вода, растворы). Заметим, что на многих объектах мы использовали схему с подачей хладона в воздухоохладитель центрального кондиционера от расположенной рядом холодильной машины или внешнего блока VRV.
    По способу компенсации изменяющихся тепловых и (или) влажностных возмущений в обслуживаемом помещении различают СКВ с постоянным расходом воздуха (CAV) – системы, в которых внутренние параметры поддерживают изменяя температуру и влажность приточного воздуха (качественное регулирование), и системы с переменным расходом воздуха (VAV) – системы с количественным регулированием.
    По числу воздуховодов для подачи кондиционированного воздуха в помещенияСКВ делятся на одноканальные и двухканальные, при этом приточный воздух в каждом канале имеет разную температуру и влажность, что позволяет, изменяя соотношение приточного воздуха, подаваемого через каждый канал, поддерживать требуемые параметры в обслуживаемом помещении.
    По числу точек стабилизации одноименного параметра (t; φ)в большом помещении или группе небольших помещений различают одно- и многозональные СКВ.
    –это СКВ с местными доводчиками. В этих СКВ центральная или местная УКВ подает в помещение санитарную норму наружного воздуха, даже не обязательно обработанного, а местные доводчики обеспечивают поддержание в помещении требуемых параметров воздуха (температуры, относительной влажности и подвижности).
    Сегодня в качестве местных доводчиков применяют: внутренние блоки сплит-систем или VRV-систем; фэнкойлы (двух- или четырехтрубные); моноблоки (напольные, потолочные или настенные); эжекционные доводчики; местные увлажнители воздуха; охлаждаемые и нагреваемые потолки; охлаждающие балки (пассивные и активированные).
    Все указанные доводчики сами по себе не являются кондиционерами, хотя их и называют так продавцы оборудования.
    Известно, что некоторые фирмы работают над созданием, например, фэнкойлов или сплит-систем, подающих в помещение наружный воздух. Но, если это и произойдет в массовом масштабе, то ничего страшного с классификацией не случится, просто это оборудование получит статус местных кондиционеров.
    Блок-схема рассмотренной классификации СКВ приведена на рис. 2.
    Помимо рассмотренных признаков в схему на рис. 2 включен еще один: наличие утилизаторов теплоты и холода, которые могут быть как в центральных, так и в местных СКВ. Причем необходимо различать системы утилизации типа воздух-воздух, к которым относятся схемы с промежуточным теплоносителем, с пластинчатыми теплообменниками* и с регенеративными вращающимися и переключаемыми теплообменниками, а также системы утилизации теплоты оборотной воды и теплоты обратного теплоносителя систем централизованного теплоснабжения и систем технологического жидкостного охлаждения.

    Литература

    1. Липа А. И. Кондиционирование воздуха. Основы теории. Совре-менные технологии обработки воздуха. – Одесса: Издательство ВМВ, 2010.
    2. СНиП 41–01–2003. Отопление, вентиляция, кондиционирование. М.: Госстрой России. – 2004.
    3. Англо-русский терминологический словарь по отоплению, вентиляции, кондиционированию воздуха и охлаждению. М.: Изд-во «АВОК-ПРЕСС», 2002.
    4. Кокорин О. Я. Энергосберегаю-щие системы кондиционирования воздуха. ООО «ЛЭС». – М., 2007.
    5. Кондиционеры. Каталог-спра-воч-ник ЦНИИТЭстроймаш. – М., 1981.
    6. Рымкевич А. А. Системный анализ оптимизации общеобменной вентиляции и кондиционирования воздуха. Изд. 1. – М.: Стройиздат, 1990.
    7. Баркалов Б. В., Карпис Е. Е. Кондиционирование воздуха в промышленных, общественных и жилых зданиях. Изд. 2. – М.: Стройиздат, 1982.
    8. Сотников А. Г. Процессы, аппараты и системы кондиционирования воздуха и вентиляции. Т. 1. ООО «АТ». – С.-Петербург, 2005.
    9. Стефанов Е. В. Вентиляция и кондиционирование воздуха. – С.-Петербург: Изд-во «АВОК-Северо-Запад», 2005.

    [ http://www.abok.ru/for_spec/articles.php?nid=5029]

    Тематики

    EN

    DE

    FR

    Русско-английский словарь нормативно-технической терминологии > система кондиционирования воздуха

  • 20 структурная теория

    Попытка объяснить с помощью определенной модели устойчивость, организацию и взаимодействие отдельных, то есть относительно стабильных и функционирующих определенным образом, частей психического аппарата. Наиболее известной является трехкомпонентная модель, предложенная Фрейдом в 1923 году, хотя его более раннюю топографическую теорию, равно как и конструкции других аналитиков, также можно рассматривать как структурные.
    Трехкомпонентная теория была разработана Фрейдом из-за несоответствия и ограниченности топографической модели при объяснении некоторых клинических данных. До 1923 года интрапсихический конфликт понимался как несогласованность между сознательной частью психики, включающей в себя силы вытеснения и моральные запреты, и бессознательным, куда помещаются отраженные инстинктивные влечения. Обнаружив, что психическая защита от влечений также действует бессознательно и что бессознательное чувство вины проявляется в различных клинических состояниях (негативная терапевтическая реакция, меланхолия, невроз навязчивых состояний и определенное преступное поведение), Фрейд представил новую теорию, призванную объяснить, каким образом психика функционирует в ситуации конфликта с инстинктивными влечениями. В соответствии с этой второй структурной теорией, рассматриваемой в настоящее время как наиболее эвристическая, психику (психический аппарат) можно подразделить на три составные части (системы или структуры) с относительно устойчивой и прочной мотивационной конфигурацией. Эти части были названы Я, Оно и Сверх-Я. Необходимо отметить, что структурная теория не является попыткой материализовать или персонифицировать эти структуры, не имеющие ни материальной формы, ни определенного месторасположения.
    Оно состоит из психических репрезентантов обоих инстинктивных влечений, либидо и агрессию, и отображает направленные на поиск удовольствия мотивы психической жизни индивида. Структура Я, развивающаяся, как полагал Фрейд, из системы Оно, является более интегрированной и организованной. Я регулирует проявление влечений, противостоит им и является посредником между ними и требованиями внешнего мира. На основе Я развиваются компромиссные образования в виде симптомов, фантазий, сновидений, действий и черт характера. Функции Я могут использоваться для облегчения процессов удовлетворения желаний и нужд Оно. Если желания становятся неприемлемыми для Сверх-Я либо слишком опасным для Я, функции Я могут принимать форму механизмов защиты. Одной из таких функций, инициирующих формирование защиты, является сигнальная тревога (Freud, 1926).
    Фрейд полагал, что с разрешением эдипова комплекса в качестве части Я формируется третья составная психического аппарата, которую он назвал Сверх-Я, представляющее собой интернализацию родительских установок и ценностей в виде совести, призванной контролировать сексуальные и агрессивные влечения эдиповой фазы. Хотя в системе Сверх-Я присутствуют элементы доэдиповой и послеэдиповой фаз, основной вклад в нее вносит эдипов период. Таким образом, структурная теория описывает состояния психики после разрешения эдипова комплекса.
    Некоторые теоретики полагают, что структурную теорию следует приравнять к структурам трехкомпонентной модели. По их мнению, ранние особенности развития психики трансформируются под влиянием переживаний эдиповой фазы и поэтому в зрелом возрасте не проявляются. Исходя из этого, становится понятным, что анализ прежде всего должен касаться психопатологических нарушений, концентрирующихся вокруг эдиповой фазы. Однако существует и противоположная точка зрения, согласно которой главной задачей анализа является раскрытие механизмов, регулирующих взаимодействия и напряженность, возникающие при устойчивых предневротических симптоматических и поведенческих проявлениях ранних детских переживаний, а также задержек, искажений и примитивных остатков, пробивающихся сквозь сложные характерологические образования. Широкий круг психоаналитиков проявил большой клинический интерес к нарциссическим состояниям и феноменам, связанным с процессами сепарации-индивидуации, что привело к разработке иных моделей психики, учитывающих подобный аналитический опыт. Однако для большинства современных аналитиков трехкомпонентная модель остается наиболее приемлемой парадигмой для формулировки и применения психоаналитической теории, поскольку она хорошо объясняет интрапсихические конфликты и пригодна для расширения и ассимиляции новых наблюдений и перспектив.
    \
    Лит.: [38, 45, 73, 114, 303, 312, 347, 738, 763]

    Словарь психоаналитических терминов и понятий > структурная теория

См. также в других словарях:

  • Элементы шрифта — составные части рисунка букв, цифр и знаков шрифта, которые определяют его назначение для отдельных видов литературы (художественная, научная и др.) и роль в издании (текст, заголовок и др. элементы). Каждый Э. ш. облегчает его опознавание,… …   Реклама и полиграфия

  • Элементы Затрат — составные части совокупных затрат: материальные затраты, на оплату труда, отчисления на социальные нужды, амортизация основных фондов, прочие затраты. Словарь бизнес терминов. Академик.ру. 2001 …   Словарь бизнес-терминов

  • Элементы — 34. Элементы оборудование, приборы, трубопроводы, кабели, строительные конструкции и другие изделия, обеспечивающие реализацию заданных функций самостоятельно или в составе систем и рассматриваемые в проекте в качестве структурных единиц при… …   Словарь-справочник терминов нормативно-технической документации

  • элементы СЭМ — 3.21 элементы СЭМ: Составные части системы, требования к которым установлены в пунктах ГОСТ Р ИСО 14001 2007, не разделенных на подпункты с цифровым обозначением. Примечание Данное определение приводится только для целей сертификации систем… …   Словарь-справочник терминов нормативно-технической документации

  • ЭЛЕМЕНТЫ ЛАНДШАФТА — 1) простейшие части компонентов, из комбинации которых складывается многообразие объектов реального мира, или максимальный предел их расчленения; 2) по Э. Неефу (1963), элементы ландшафта простейшие составные части компонентов, далее (в пределах… …   Экологический словарь

  • Элементы химические —         (a. chemical elements; н. chemische Elemente; ф. elements chimiques; и. elementos quimicos) составные части простых и сложных тел, представляющие собой совокупность атомов c одинаковым зарядом атомных ядер и одинаковым числом электронов в …   Геологическая энциклопедия

  • ЭЛЕМЕНТЫ (КОМПОНЕНТЫ) ПОЛЕЗНЫЕ — составные части полезного ископаемого, представляющие интерес для промышленности. В Э. п. входят элементы главные и второстепенные, включая элементы примеси, элементы спутники и элементы легирующие. Геологический словарь: в 2 х томах. М.: Недра.… …   Геологическая энциклопедия

  • ЭЛЕМЕНТЫ — (лат. elementum стихия, первовещество; калька греч. stoiheia, от stoihos члены ряда, т.е. первоначально буквы алфавита) в ранней древнегреческой философии четыре первоначальных вещества (земля, вода, огонь, воздух) и как ‘пятый элемент’ (лат.… …   История Философии: Энциклопедия

  • ЭЛЕМЕНТЫ — (лат. elementum стихия, первовещество; калька греч. stoiheia, от stoihos члены ряда, т.е. первоначально буквы алфавита) в ранней древнегреческой философии четыре первоначальных вещества (земля, вода, огонь, воздух) и как «пятый элемент» (лат.… …   Новейший философский словарь

  • Элементы комплексного благоустройства территории — Элементы комплексного благоустройства декоративные, технические, планировочные, конструктивные устройства, растительные компоненты, различные виды оборудования и оформления, малые архитектурные формы, некапитальные нестационарные сооружения,… …   Официальная терминология

  • элементы системы менеджмента качества — 3.2 элементы системы менеджмента качества: Составные части системы, требования к которым установлены в пунктах ГОСТ Р ИСО 9001, не разделенных на подпункты с цифровым обозначением. Примечание Данное определение приводится только для целей… …   Словарь-справочник терминов нормативно-технической документации

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»